SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title: MATHEMATICS

Code No.: MTH 551-4

Program: MECHANICAL TECHNOLOGY

Semester:

Date: MAY 11, 1983

Author: J. SUFADY

New; Revision

APPROVED:

Chafrp^r^on ^ Date

CALENDAR DESCRIPTION

MATHEMATICS MTH 551-4
Course Name course Number

PHILOSOPHY/GOALS:

Students studying mathematics at this level are those individuals where a certain degree of originality, a sense of logic and an ability to learn independently are required of them in their major subject area. This course serves to exercise these 3 requirements and to also give them a theoretical knowledge for their academic subjects-

METHOD OF ASSESSMENT (GRADING METHOD):

- 1. 3-4 tests per semester
- 2. Final Grade is a weighted average of these tests.
- 3. A failing grade at the end of the semester can be upgraded by writing a 2 hour comprehensive examination.

TEXTBOOK(S):

Washington, Allan, J., Technical Calculus With Analytic Geometry

OBJECTIVES:

The basic objective 1s for the student to develop an understanding of the methods studied, knowledge of the facts presented and an ability to use these In the solution of problems. For this purpose exercises are assigned, Tests will reflect the sort of work contained in other assignments— The level of competency demanded is the level required to obtain an overall passing average in the tests. The material to be covered is listed on the following page(s).

Topic	•
Numbar	

Periods

Topic Description

Reference

Number Systems (Electrical & Electronic only) Binary, Octal, binary coded decimal systems Change of base Addition & Multiplication tables Algebra of elements

Boolean Algebra (Electrical & Electronic only) Definitions of Z elements & 2

operations
Truth Tables
Derivation of simple Identities
Negation - the not operator
Application to logic & switches

Empirical Equations (Aviation only)

Linear empirical equations
Non-linear empirical equations

Major subject test ^ Maivino & Leach Ch. 2, 3, 4

See text booklists Ref. #12 Ch. 5

Rice & Knight 2nd Edition Ch. 6, p. 131-136 Ch. 14, p. 334-352

Topic Number	Periods	Topic Description	Reference
4	4	Interpolation (Aviation only) (tabulated performance charts) Review basic Interpolation trends In tabulated data (4 place logarithm & natural trig tables) Use of Aviation CR-3 type computers In Interpolation (proportions)	Any 4 place log & trig table
		Multiple Interpolation procedures Practical Problems <i>in</i> assorted performance tables take-off landing, climb & cruise performance charts.	Cessna 172M Cessna 180 Cessna 182
		Graphical (Performance Charts) (Aviation only) Reading graphical charts Normal critical path through multiple graph charts Reverse path through multigraph charts given conditions Practical problems	Cessna 172M
		Graph Preparation (Aviation only) Procedures for making engineering graphs Selection of axis, names, labelling	Cessna 172M
		techniques Multiline graphs from tabulated performance charts Interpolation in multiline graphs Winds aloft graph on CR-3 computer Practical assignments	Piper Twin Comanche
		Graphical Methods of Calculus Gradients of curves, rate of change Slopes of graphs of linear & non- linear functions Average & instantaneous rates of change	Rice & Knight Ch, 24

m		MATHEMATICS	
Topic Number	Periods	Topic Description	Reference
8		Introduction to Differential Calculus Functional notation Limiting value of a function Differentiation-delta method Practical applications-rectiline motion	Washington p, 45-64 Blakely, Ch. 3 p. 31-53 Person, Ch. 2, 8, 9, 10, 11. 12
	12	Differentiation by Rule Differentiation formulas Composite function & the chain rule Implicit differentiation Electrical applications Successive differentiation	Washington p. 64-84 Blakely. Ch, 5 & 6 p. 80-110 Person Ch. 13, 14, 15. 16
10	10	Practical Application of Differentiation Gradients Tangents to curves Maxima and minima (Aviation should finish the semester here) Related rate problems	Washington p. 85-112 Blakely, Ch, 4 p, 54-79 Person Ch- 15, 17, 18, 20
11	5	Differential and Integral (for Mechanical, give more application time) Differential formulas Applications of differential Integration as anti-differentiation Applications of indefinite integration Algebraic substitution (Electrical/Electronic should finish the semster here)	Washington p. 113-127 Blakely, Ch. 7 p. 111-120 Person Ch. 21, 22, 23
12	9	Definite Integration Areas under a curve Fundamental theorem of integral calculus Computations with definite integrals Application to areas, volume, motion electrical problems (Mechanicals should finish the semester here)	Washington p. 128-153 Blakely p. 121-141 Person Ch. 24, 25. 26